A Rational Interpolation Scheme with Superpolynomial Rate of Convergence

نویسندگان

  • Qiqi Wang
  • Parviz Moin
  • Gianluca Iaccarino
چکیده

The purpose of this study is to construct a high-order interpolation and scheme for arbitrary scattered datasets. The resulting function approximation is an interpolation function when the dataset is exact, or a regression if measurement errors are present. We represent each datapoint with a Taylor series, and the approximation error as a combination of the derivatives of the the target function. A weighted sum of the square of the coefficient of each derivative term in the approximation error is minimized to obtain the interpolation approximation. The resulting approximation function is a high-order rational function with no poles. When measurement errors are absent, the interpolation approximation converges to the target function faster than any polynomial rate of convergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational interpolation and quadrature on the interval and on the unit circle

Given a positive bounded Borel measure μ on the interval [−1, 1], we provide convergence results in Lμ2 -norm to a function f of its sequence of rational interpolating functions at the nodes of rational Gauss-type quadrature formulas associated with the measure μ. As an application, we construct rational interpolatory quadrature formulas for complex bounded measures σ on the interval, and give ...

متن کامل

On the convergence of rational approximations of semigroups on intermediate spaces

We generalize a result by Brenner and Thomée on the rate of convergence of rational approximation schemes for semigroups. Using abstract interpolation techniques we obtain convergence on a continuum of intermediate spaces between the Banach space X and the domain of a certain power of the generator of the semigroup. The sharpness of the results is also discussed.

متن کامل

On Spectral Approximations Using Modified Legendre Rational Functions: Application to the Korteweg-deprotect unskip penalty @M ignorespaces Vries Equation on the Half Line

A new set of modified Legendre rational functions which are mutually orthogonal in L2(0,+∞) is introduced. Various projection and interpolation results using the modified Legendre rational functions are established. These results form the mathematical foundation of related spectral and pseudospectral methods for solving partial differential equations on the half line. A spectral scheme using th...

متن کامل

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

The Linear Barycentric Rational Quadrature Method for Volterra

We introduce two direct quadrature methods based on linear rational interpolation for solving general Volterra integral equations of the second kind. The first, deduced by a direct application of linear barycentric rational quadrature given in former work, is shown to converge at the same rate as the rational quadrature rule but is costly on long integration intervals. The second, based on a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2010